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1. INTRODUCTION

Let L p= Lp(S, L, /1), 1~ p < 00, be the Banach space of all /1-measurable
extended real valued functions (equivalence classes) Y on S such that

[ l
I~

Ilyll = IIYll p = J" ly(sW/1(ds) < eG,

where (S, L, /1) is a positive measure space. If X is a convex closed non
empty subset of Lp , then an element z in X is called a best approximation
to an element Y in L p if

Ily-zll ~ tv-xii, ( 1.1 )

for all x in X. We have proved in [5,6] that there exists a positive con
stant cp ~ 1 independent of the element y in L p , 2 ~ p < 00, such that the
strong unicity inequality

(1.2 )

holds for all x in X. The largest constant in (1.2) is

where to = to(p) denotes the unique zero of the function

g(t)= -tP '+(p-l)t+p-2 (1.4 )

in the interval (1, (0) for p> 2, and to(2) = 1.
In this paper we establish a counterpart of (1.2) for L p spaces where

1~p<2.
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2. THE MAIN RESULTS

At first, we prove an auxiliary lemma.

LEMMA 2.1. The inequality

1~ p < 2, c > I, (2.1 )

holds for all u, v E IR such that u i= 0 when p = 1 if and only if C? cp where
c 1 = 2 and cp is as in (1.3) for 1< p < 2.

Proal At first, we suppose that p = 1 and u i= O. Then the inequality
(2.1) can be written in the form

Ivl ~ v sgn(u) ~ clv - ul.

If v=O or sgn(u) = sgn(v) then the inequality holds for any c>O.
Otherwise, ifsgn(u)= -sgn(v)i=Othen we have

Ivl- v sgn(u) = 21vl ~ 21v ~ ul ~ clv - ul,

for any constant C? 2. Since u can be arbitrarily close to zero, it follows
that the smallest constant c in the inequality (2.1) is equal to 2.

Now, suppose that 1 < p < 2. By the definition of to it follows that

t(; 1 = (p - 1) to + P - 2.

This implies the second equality in (1.3). By the first formula for cp , we
have cp > 1. If u = 0 then the inequality (2.1) is true for all v E IR and C? 1.
In particular, this holds for all C? cp' Consequently, we can assume that
u i= 0 and denote t = vlu E IR. Dividing both sides of the inequality (2.1) by
lui P, we get the equivalent inequality

f(t)=f(t, c):= 1t[P-clt-lI"- pt+ p-l ~O.

Since ["(0) = -f"(I)= +00 and

t i= 0, I,

it follows that the function f is strictly convex on the interval

I(c) = [kl(k -1), kl(k + 1)], k = C 1/ 1p - 2) < 1,

and it is strictly concave otherwise. Moreover, we have

f( 1, c) = f' (1, c) = 0, ["(I, c) = -00



and
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f( - to, Cp) = f'( - to, Cp)/p = g(to) = 0,

f"( - to, Cp) = p(p - I )(tf)- 2 - 1)/( I + to) < O.

Hence the points t= -to<k(cp)/(k(cp)-I) and t= I >k(cp)/(k(cp)+ I) in
~\I(cp) are unique maxima of the function f(', cpl. This implies that
f( t, Cp) ::( 0 for all real t. Finally,f(t, c) is a decreasing function of variable c
for every fixed t i= I. Thus we have

(2.2)

for any C < cpo This completes the proof. I
The unique zero to = to(p) E ( I, 00) of the function g( t) defined by (1.4)

lies in the interval (tl' tJ (cf. Fig. I). An easy computation gives

and l<p<2. (2.3)

The function (1+t p- 1 )(I+t)1-P of variable t~1 is decreasing for any
pE (1,2). Hence by (1.3), we have

In particular, it follows that

1 < p < 2.

(2.4 )

1< cp < 2,

lim cp = 2
p--f' 1 +

for every 1 < p < 2,

and

p-2

21p-2l

FIG. I. Lower and upper bounds I, and lu for 10 ,
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The equation g(t) = 0 can not be solved explicitly for an arbitrary p.
However, we easily find that

toG) = 3 + 2)2,

and

Now let r(x, y - x) denote the Gateaux derivative of pth power of Lp-norm

at the point x ELI' in the direction y - x ELI" i.e., let

( ) \
. Ilx+t(y-x)III'-llxlll'

r x, y-x = 1m
f -, 0 t

It is well known [3, pp. 350-351] that the derivative exists for any x, y in
LI' = LI'(5, I, f1) (I < p < (0) and

r(x, y - x) = pLIx(sW -2X (S)[y(s) - x(s)] j1(ds). (2.5)

Moreover, if x ELI satisfies the condition

j1(N,) = 0; N, := {SE 5: x(s) = O},

then the Gateaux derivative r(x, y - x) exists for any y ELI and it is given
by the formula (2.5). In the following theorem we establish an inequality
for the Gateaux derivative of pth power of Lp-norm (I ~ p < 2), which
seems to be independently interesting. From now on we assume that cp ;

1~ p < 2, is defined as in Lemma 2.1.

THEOREM 2.1. For any p E [ I, 2), we have

r(x, y-x)~ 1IY111'-llxIIP-cplly-xlll'; (2.6 )

where it is additionally assumed that j1( N,) = 0 when p = 1.

Prool Apply Lemma 2.1 replacing u by x( .1') and v by y( s). Then we
obtain

plx(s)1 p- 2X (S)[y(s) - x(s)] ~ Iy(sW - Ix(sW - cpl y(s) - x(sW,

for every S E 5\B, where B is the set of measure zero consisting of all points
sin 5 such that values x(s) or y(s) are not finite. Finally, integrating both
sides of this inequality and using (2.5), we get the inequality (2.6). I
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Remark 2.1. If p = 2 then in (2.6) we have equality with Cz = 1. Further,
if p > 2 then in (2.6) the inverse inequality holds [6J with the positive con
stant cp < 1 defined by (1.3).

Remark 2.2. In general, the constant cp in (2.6) cannot be replaced by
a smaller constant. For example, suppose that 1 < p < 2 and J1.(S) < 00. If
we choose v=y(s)= -to and u=x(s)= 1, then in view of (2.2) the
inequality (2.1) holds only for c?;cp and it becomes the equality for c=cp'
Clearly, this is also true for the inequality (2.6).

Now we present the main result of the paper.

THEOREM 2.2. Let X be a subspace of L p= Lp(S, 1:, J1.), 1~ p < 2. If
z E X is a best approximation to an element y in L p, then

(2.7)

for all x in X, where it is additionally assumed that J1.(N, J =°when p = 1.

Prool Suppose that Z E X is a best approximation to an element y in L p
and that x is an element in X. Let us replace x and y in the inequality (2.6)
with y - Z and y - x, respectively. Then we get

By the Kolmogorov criterion [4, p. 90J, we have r(y - z, z - x) = 0. This in
conjunction with (1.1) completes the proof. I

Finally, we present two corollaries which result from Theorem 2.2. For
this purpose, we recall [1, p. 222J that the algebraic polynomial z(t) =

t"-2 "V,,(t) of degree n-l, where

V,,(t) = sin(n + 1) e/sin e (cos e= t, ~ 1~ t ~ 1)

denotes the Chebyshev polynomial of the second kind, is the best
approximation to the function y( t) = t" in the subspace X = .9;,- 1 of all
algebraic polynomials of degree less of equal to n - 1 with respect to the
norm of the Lebesgue space Y = L, ( - 1, 1). Moreover, the error II y - zll of
this approximation is equal to 2 1

". Hence by Theorem 2.2, we obtain the
following corollary.

COROLLARY 2.1. For every polynomial w = w( t) in ~ with the coefficient
at til equal to 1, we have

2' "~ Ilwll ~2'/+21Iw-2 "V/II,

where 11·11 is L, ( - 1, 1)-norm and V Il denotes the Chebyshev polynomial of
the second kind.
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Further, let Dr be the Bernoulli function defined by

DAt)= I k-rcos(kt+nr/2);
k ~ I

0:( t :( 2n, r = I, 2, ....

Then by [2, pp. 61-66] the best L 1(0, 2)-approximation Z r to Y = Dr in the
subspace X = 5;', Ie L I (0, 2n) of all trigonometric polynomials T of the
form

n -- 1

T(t) = ao + I (ak cos kt + bk sin kt)
k~1

exists and its error is equal to

Ar :=IIDr-zrll=4n- r I (_I)k1r+I)(2k+l)r-l
k~O

Hence by Theorem 2.2, we obtain

COROLLARY 2.2. For every trigonometric polynomial Tin /Jf" _I' we have

r= 1,2,... ,

where 11'11 denotes the Lebesque L I (0, 2n )-norm and Z r is the best L I (0, 2n)
approximation to the Bernoullifunction Dr with the error Ar.
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