On Best Approximation in L_{ρ} Spaces

Ryszard Smarzewski
Department of Mathematics, M. Curie-Sklodonska University, 20-03I Lublin, Poland
Communicated by Oved Shisha

Received January 17, 1985

1. Introduction

Let $L_{p}=L_{p}(S, \Sigma, \mu), 1 \leqslant p<\infty$, be the Banach space of all μ-measurable extended real valued functions (equivalence classes) y on S such that

$$
\|y\|=\|y\|_{p}=\left[\int_{S}|y(s)|^{p} \mu(d s)\right]^{1 / p}<\infty
$$

where (S, Σ, μ) is a positive measure space. If X is a convex closed nonempty subset of L_{p}, then an element z in X is called a best approximation to an element y in L_{p} if

$$
\begin{equation*}
\|y-z\| \leqslant\|y-x\| \tag{1.1}
\end{equation*}
$$

for all x in X. We have proved in $[5,6]$ that there exists a positive constant $c_{p} \leqslant 1$ independent of the element y in $L_{p}, 2 \leqslant p<\infty$, such that the strong unicity inequality

$$
\begin{equation*}
\|y-z\|^{p} \leqslant\|y-x\|^{p}-c_{p}\|z-x\|^{p} \tag{1.2}
\end{equation*}
$$

holds for all x in X. The largest constant in (1.2) is

$$
\begin{equation*}
c_{p}=\left(1+t_{0}^{p-1}\right)\left(1+t_{0}\right)^{1 \cdot p}=(p-1)\left(1+t_{0}\right)^{2} \quad p, \tag{1.3}
\end{equation*}
$$

where $t_{0}=t_{0}(p)$ denotes the unique zero of the function

$$
\begin{equation*}
g(t)=-t^{p-1}+(p-1) t+p-2 \tag{1.4}
\end{equation*}
$$

in the interval $(1, \infty)$ for $p>2$, and $t_{0}(2)=1$.
In this paper we establish a counterpart of (1.2) for L_{p} spaces where $1 \leqslant p<2$.

2. The Main Results

At first, we prove an auxiliary lemma.
Lemma 2.1. The inequality

$$
\begin{equation*}
p|u|^{p^{2}} \quad u(v-u) \geqslant|v|^{p}-|u|^{p}-c|v-u|^{p} ; \quad 1 \leqslant p<2, c>1, \tag{2.1}
\end{equation*}
$$

holds for all $u, v \in \mathbb{R}$ such that $u \neq 0$ when $p=1$ if and only if $c \geqslant c_{p}$ where $c_{1}=2$ and c_{p} is as in (1.3) for $1<p<2$.

Proof. At first, we suppose that $p=1$ and $u \neq 0$. Then the inequality (2.1) can be written in the form

$$
|v|-v \operatorname{sgn}(u) \leqslant c|v-u| .
$$

If $v=0$ or $\operatorname{sgn}(u)=\operatorname{sgn}(v)$ then the inequality holds for any $c>0$. Otherwise, if $\operatorname{sgn}(u)=-\operatorname{sgn}(v) \neq 0$ then we have

$$
|v|-v \operatorname{sgn}(u)=2|v| \leqslant 2|v-u| \leqslant c|v-u|
$$

for any constant $c \geqslant 2$. Since u can be arbitrarily close to zero, it follows that the smallest constant c in the inequality (2.1) is equal to 2 .

Now, suppose that $1<p<2$. By the definition of t_{0} it follows that

$$
t_{0}^{p-1}=(p-1) t_{0}+p-2 .
$$

This implies the second equality in (1.3). By the first formula for c_{p}, we have $c_{p}>1$. If $u=0$ then the inequality (2.1) is true for all $v \in \mathbb{R}$ and $c \geqslant 1$. In particular, this holds for all $c \geqslant c_{p}$. Consequently, we can assume that $u \neq 0$ and denote $t=v / u \in \mathbb{R}$. Dividing both sides of the inequality (2.1) by $|u|^{p}$, we get the equivalent inequality

$$
f(t)=f(t, c):=|t|^{p}-c|t-1|^{p}-p t+p-1 \leqslant 0
$$

Since $f^{\prime \prime}(0)=-f^{\prime \prime}(1)=+\infty$ and

$$
f^{\prime \prime}(t)=p(p-1)\left[|t|^{p \cdots 2}-c|t-1|^{p}{ }^{2}\right] ; \quad t \neq 0,1,
$$

it follows that the function f is strictly convex on the interval

$$
I(c)=[k /(k-1), k /(k+1)], \quad k=c^{1 /(p-2)}<1,
$$

and it is strictly concave otherwise. Moreover, we have

$$
f(1, c)=f^{\prime}(1, c)=0, \quad f^{\prime \prime}(1, c)=-\infty
$$

and

$$
\begin{aligned}
f\left(-t_{0}, c_{p}\right) & =f^{\prime}\left(-t_{0}, c_{p}\right) / p=g\left(t_{0}\right)=0 \\
f^{\prime \prime}\left(-t_{0}, c_{p}\right) & =p(p-1)\left(t_{0}^{p-2}-1\right) /\left(1+t_{0}\right)<0
\end{aligned}
$$

Hence the points $t=-t_{0}<k\left(c_{p}\right) /\left(k\left(c_{p}\right)-1\right)$ and $t=1>k\left(c_{p}\right) /\left(k\left(c_{p}\right)+1\right)$ in $\mathbb{R} \backslash I\left(c_{p}\right)$ are unique maxima of the function $f\left(\cdot, c_{p}\right)$. This implies that $f\left(t, c_{p}\right) \leqslant 0$ for all real t. Finally, $f(t, c)$ is a decreasing function of variable c for every fixed $t \neq 1$. Thus we have

$$
\begin{equation*}
f\left(-t_{0}, c\right)>f\left(-t_{0}, c_{p}\right)=0 \tag{2.2}
\end{equation*}
$$

for any $c<c_{p}$. This completes the proof.
The unique zero $t_{0}=t_{0}(p) \in(1, \infty)$ of the function $g(t)$ defined by (1.4) lies in the interval (t_{l}, t_{u}) (cf. Fig. 1). An easy computation gives

$$
\begin{equation*}
t_{l}=(p-1)^{1 /(p-2)} \quad \text { and } \quad t_{u}=t_{l}+(p-1)^{-1}, \quad 1<p<2 . \tag{2.3}
\end{equation*}
$$

The function $\left(1+t^{p-1}\right)(1+t)^{1-p}$ of variable $t \geqslant 1$ is decreasing for any $p \in(1,2)$. Hence by (1.3), we have

$$
\begin{equation*}
\left(1+t_{u}^{p-1}\right)\left(1+t_{u}\right)^{1-p}<c_{p}<\left(1+t_{l}^{p-1}\right)\left(1+t_{l}\right)^{1-p}<2^{2-p}, \quad 1<p<2 \tag{2.4}
\end{equation*}
$$

In particular, it follows that

$$
\begin{array}{ll}
1<c_{p}<2, & \text { for every } 1<p<2 \\
\lim _{p \rightarrow 1+} c_{p}=2 & \text { and } \quad \lim _{p \rightarrow 2-} c_{p}=1
\end{array}
$$

Fig. 1. Lower and upper bounds t_{l} and t_{u} for t_{0}.

The equation $g(t)=0$ can not be solved explicitly for an arbitrary p. However, we easily find that

$$
t_{0}\left(\frac{3}{2}\right)=3+2 \sqrt{2}, \quad c_{3 / 2}=\left(1+2^{1 / 2}\right)^{1 / 2} \approx 1.31
$$

and

$$
t_{0}\left(\frac{4}{3}\right)=8, \quad c_{4 / 3}=3^{1 / 3} \approx 1.44
$$

Now let $\tau(x, y-x)$ denote the Gateaux derivative of p th power of L_{p}-norm at the point $x \in L_{p}$, in the direction $y-x \in L_{p}$, i.e., let

$$
\tau(x, y-x)=\lim _{t \rightarrow 0} \frac{\|x+t(y-x)\|^{p}-\|x\|^{p}}{t}
$$

It is well known [3, pp. 350-351] that the derivative exists for any x, y in $L_{p}=L_{p}(S, \Sigma, \mu)(1<p<\infty)$ and

$$
\begin{equation*}
\tau(x, y-x)=p \int_{S}|x(s)|^{p-2} x(s)[y(s)-x(s)] \mu(d s) . \tag{2.5}
\end{equation*}
$$

Moreover, if $x \in L_{1}$ satisfies the condition

$$
\mu\left(N_{x}\right)=0 ; N_{x}:=\{s \in S: x(s)=0\}
$$

then the Gateaux derivative $\tau(x, y-x)$ exists for any $y \in L_{1}$ and it is given by the formula (2.5). In the following theorem we establish an inequality for the Gateaux derivative of p th power of L_{p}-norm $(1 \leqslant p<2)$, which seems to be independently interesting. From now on we assume that c_{p}; $1 \leqslant p<2$, is defined as in Lemma 2.1.

Theorem 2.1. For any $p \in[1,2)$, we have

$$
\begin{equation*}
\tau(x, y-x) \geqslant\|y\|^{p}-\|x\|^{p}-c_{p}\|y-x\|^{p} ; \quad x, y \in L_{p} \tag{2.6}
\end{equation*}
$$

where it is additionally assumed that $\mu\left(N_{x}\right)=0$ when $p=1$.
Proof. Apply Lemma 2.1 replacing u by $x(s)$ and v by $y(s)$. Then we obtain

$$
p|x(s)|^{p-2} x(s)[y(s)-x(s)] \geqslant|y(s)|^{p}-|x(s)|^{p}-c_{p}|y(s)-x(s)|^{p}
$$

for every $s \in S \backslash B$, where B is the set of measure zero consisting of all points s in S such that values $x(s)$ or $y(s)$ are not finite. Finally, integrating both sides of this inequality and using (2.5), we get the inequality (2.6).

Remark 2.1. If $p=2$ then in (2.6) we have equality with $c_{2}=1$. Further, if $p>2$ then in (2.6) the inverse inequality holds [6] with the positive constant $c_{p}<1$ defined by (1.3).

Remark 2.2. In general, the constant c_{p} in (2.6) cannot be replaced by a smaller constant. For example, suppose that $1<p<2$ and $\mu(S)<\infty$. If we choose $v=y(s) \equiv-t_{0}$ and $u=x(s) \equiv 1$, then in view of (2.2) the inequality (2.1) holds only for $c \geqslant c_{p}$ and it becomes the equality for $c=c_{p}$. Clearly, this is also true for the inequality (2.6).

Now we present the main result of the paper.
Theorem 2.2. Let X be a subspace of $L_{p}=L_{p}(S, \Sigma, \mu), 1 \leqslant p<2$. If $z \in X$ is a best approximation to an element y in L_{p}, then

$$
\begin{equation*}
\|y-z\|^{p} \leqslant\|y-x\|^{p} \leqslant\|y-z\|^{p}+c_{p}\|z-x\|^{p} \tag{2.7}
\end{equation*}
$$

for all x in X, where it is additionally assumed that $\mu\left(N_{y-z}\right)=0$ when $p=1$.
Proof. Suppose that $z \in X$ is a best approximation to an element y in L_{p} and that x is an element in X. Let us replace x and y in the inequality (2.6) with $y-z$ and $y-x$, respectively. Then we get

$$
\tau(y-z, z-x) \geqslant\|y-x\|^{p}-\|y-z\|^{p}-c_{p}\|z-x\|^{p} .
$$

By the Kolmogorov criterion [4, p. 90], we have $\tau(y-z, z-x)=0$. This in conjunction with (1.1) completes the proof.

Finally, we present two corollaries which result from Theorem 2.2. For this purpose, we recall $[1, \mathrm{p} .222]$ that the algebraic polynomial $z(t)=$ $t^{n}-2{ }^{n} U_{n}(t)$ of degree $n-1$, where

$$
U_{n}(t)=\sin (n+1) \theta / \sin \theta \quad(\cos \theta=t,-1 \leqslant t \leqslant 1)
$$

denotes the Chebyshev polynomial of the second kind, is the best approximation to the function $y(t)=t^{n}$ in the subspace $X=\mathscr{P}_{n-1}$ of all algebraic polynomials of degree less of equal to $n-1$ with respect to the norm of the Lebesgue space $Y=L_{1}(-1,1)$. Moreover, the error $\|y-z\|$ of this approximation is equal to $2^{1 \cdot n}$. Hence by Theorem 2.2, we obtain the following corollary.

Corollary 2.1. For every polynomial $w=w(t)$ in \mathscr{P}_{n} with the coefficient at t^{n} equal to 1 , we have

$$
2^{1-n} \leqslant\|w\| \leqslant 2^{1-n}+2\left\|w-2^{n} U_{n}\right\|,
$$

where $\|\cdot\|$ is $L_{1}(-1,1)$-norm and U_{n} denotes the Chebyshev polynomial of the second kind.

Further, let D_{r} be the Bernoulli function defined by

$$
D_{r}(t)=\sum_{k=1}^{x} k^{-r} \cos (k t+\pi r / 2) ; \quad 0 \leqslant t \leqslant 2 \pi, r=1,2, \ldots
$$

Then by [2, pp. 61-66] the best $L_{1}(0,2)$-approximation z_{r} to $y=D_{r}$ in the subspace $X=\mathscr{T}_{n-1} \subset L_{1}(0,2 \pi)$ of all trigonometric polynomials T of the form

$$
T(t)=a_{0}+\sum_{k=1}^{n-1}\left(a_{k} \cos k t+b_{k} \sin k t\right)
$$

exists and its error is equal to

$$
\lambda_{r}:=\left\|D_{r}-z_{r}\right\|=4 n^{-r} \sum_{k=0}^{\infty}(-1)^{k(r+1)}(2 k+1)^{-r-1} .
$$

Hence by Theorem 2.2, we obtain
Corollary 2.2. For every trigonometric polynomial T in \mathscr{T}_{n-1}, we have

$$
\lambda_{r} \leqslant\left\|D_{r}-T\right\| \leqslant \lambda_{r}+2\left\|z_{r}-T\right\| ; \quad r=1,2, \ldots
$$

where $\|\cdot\|$ denotes the Lebesque $L_{1}(0,2 \pi)$-norm and z_{r} is the best $L_{1}(0,2 \pi)$ approximation to the Bernoulli function D_{r} with the error λ_{r}.

References

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. N. P. Korneicuk, "Optimization Problems in Approximation Theory," Moscow, 1976.
3. G. Köthe, "Topological Vector Spaces I," Springer-Verlag, Berlin, 1969.
4. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, 1970.
5. R. Smarzewski, Strongly unique best approximation in Banach spaces, J. Approx. Theory 47 (1986), 184-194.
6. R. Smarzewski, Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155-172.
